Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36904039

RESUMEN

Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce resistance against plant pathogens. A field experiment was conducted in two growing seasons (2019-2020) to investigate the effect of benzothiadiazole on polyphenol biosynthesis during grape ripening in Mouhtaro (red-colored) and Savvatiano (white-colored) varieties. Grapevines were treated at the stage of veraison with 0.3 mM and 0.6 mM benzothiadiazole. The phenolic content of grapes, as well as the expression level of genes involved in the phenylpropanoid pathway were evaluated and showed an induction of genes specifically engaged in anthocyanins and stilbenoids biosynthesis. Experimental wines deriving from benzothiadiazole-treated grapes exhibited increased amounts of phenolic compounds in both varietal wines, as well as an enhancement in anthocyanin content of Mouhtaro wines. Taken together, benzothiadiazole can be utilized to induce the biosynthesis of secondary metabolites with oenological interest and to improve the quality characteristics of grapes produced under organic conditions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36948355

RESUMEN

Insects, like most organisms, have an internal circadian clock that oscillates with a daily rhythmicity, and a timing mechanism (photoperiodic clock) that mediates seasonal events, including diapause. It has been argued that there is a connection between the two clocks. The Mediterranean corn stalk borer moth, Sesamia nonagrioides, undergoes facultative diapause governed by photoperiod. To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we cloned and investigated the expression profiles of the clock genes Snper, Sntim, Sncyc and Sncry1 in the aforementioned moth species. Our previous results suggested that these genes might be implicated in the regulation of the diapause programming in S. nonagrioides. Here we studied the expression patterns of these four clock genes in larvae reared under abnormal non-24 h light-dark cycles (L10:D62 and L10:D14:L10:D62) in order to assess whether disruption of circadian clock would have any effect in the photoperiodic regulation of diapause. In the L10:D14:L10:D62 cycle abnormal expression patterns of the Sntim/Sncry1 and Snper/Sncyc pairs were found, compared to normal 24 h light-dark photoperiods suggesting that individual clock genes are acting independently in the molecular diapause program of S. nonagrioides. Photoperiod therefore appears to be the crucial signal for the regulation of these four genes.


Asunto(s)
Relojes Circadianos , Diapausa , Mariposas Nocturnas , Animales , Fotoperiodo , Relojes Circadianos/genética , Mariposas Nocturnas/genética , Ritmo Circadiano/genética
3.
Cells ; 11(21)2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359737

RESUMEN

The activation of BRASSINOSTEROID INSENSITIVE1 (BRI1) and its association with the BRI1 ASSOCIATED RECEPTOR KINASE1 (BAK1) are key steps for the initiation of the BR signaling cascade mediating hypocotyl elongation. Heat shock protein 90 (HSP90) is crucial in the regulation of signaling processes and the activation of hormonal receptors. We report that HSP90 is required for the maintenance of the BRI1 receptor at the plasma membrane (PM) and its association with the BAK1 co-receptor during BL-ligand stimulation. HSP90 mediates BR perception and signal transduction through physical interactions with BRI1 and BAK1, while chaperone depletion resulted in lower levels of BRI1 and BAK1 receptors at the PM and affected the spatial partitioning and organization of BRI1/BAK1 heterocomplexes at the PM. The BRI1/BAK1 interaction relies on the HSP90-dependent activation of the kinase domain of BRI1 which leads to the confinement of the spatial dynamics of the membrane resident BRI1 and the attenuation of the downstream signaling. This is evident by the impaired activation and transcriptional activity of BRI1 EMS SUPPRESSOR 1 (BES1) upon HSP90 depletion. Our findings provide conclusive evidence that further expands the commitment of HSP90 in BR signaling through the HSP90-mediated activation of BRI1 in the control of the BR signaling cascade in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Membrana Celular/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo
4.
Plants (Basel) ; 11(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807600

RESUMEN

During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants-abscisic acid (0.04% w/v and 0.08% w/v) and chitosan (0.3% w/v and 0.6% w/v)-on the polyphenol metabolism of the Greek grapevine cultivar, Savvatiano, in order to determine the impact of biostimulants' application in the concentration of phenolic compounds. The applications were performed at the veraison stage and the impact on yield, berry quality traits, metabolome and gene expression was examined at three phenological stages (veraison, middle veraison and harvest) during the 2019 and 2020 vintages. Results showed that anthocyanins increased during veraison after treatment with chitosan and abscisic acid. Additionally, stilbenoids were recorded in higher amount following the chitosan and abscisic acid treatments at harvest. Both of the abscisic acid and chitosan applications induced the expression of genes involved in stilbenoids and anthocyanin biosynthesis and resulted in increased accumulation, regardless of the vintage. Alterations in other phenylpropanoid gene expression profiles and phenolic compound concentrations were observed as well. Nevertheless, they were mostly restricted to the first vintage. Therefore, the application of abscisic acid and chitosan on the Greek cultivar Savvatiano showed promising results to induce stilbenoid metabolism and potentially increase grape defense and quality traits.

5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613530

RESUMEN

Circuitries of signaling pathways integrate distinct hormonal and environmental signals, and influence development in plants. While a crosstalk between brassinosteroid (BR) and gibberellin (GA) signaling pathways has recently been established, little is known about other components engaged in the integration of the two pathways. Here, we provide supporting evidence for the role of HSP90 (HEAT SHOCK PROTEIN 90) in regulating the interplay of the GA and BR signaling pathways to control hypocotyl elongation of etiolated seedlings in Arabidopsis. Both pharmacological and genetic depletion of HSP90 alter the expression of GA biosynthesis and catabolism genes. Major components of the GA pathway, like RGA (REPRESSOR of ga1-3) and GAI (GA-INSENSITIVE) DELLA proteins, have been identified as physically interacting with HSP90. Interestingly, GA-promoted DELLA degradation depends on the ATPase activity of HSP90, and inhibition of HSP90 function stabilizes the DELLA/BZR1 (BRASSINAZOLE-RESISTANT 1) complex, modifying the expression of downstream transcriptional targets. Our results collectively reveal that HSP90, through physical interactions with DELLA proteins and BZR1, modulates DELLA abundance and regulates the expression of BZR1-dependent transcriptional targets to promote plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
6.
Plant Physiol ; 188(2): 1043-1060, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34633458

RESUMEN

In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Potasio/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transporte Iónico/genética
7.
Front Plant Sci ; 12: 671487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539687

RESUMEN

Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein ß-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.

8.
Plants (Basel) ; 10(9)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34579479

RESUMEN

Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas. Moreover, in the case of grapevine, moderate water deficit is known to improve the quality traits of grape berries and subsequently wine composition. However, against the backdrop of climate change, vines are expected to experience sustained water deficits which could be detrimental to both grape quality and yield. The influence of water deficit on two Greek Vitis vinifera L. cultivars, 'Agiorgitiko' and 'Assyrtiko', was investigated during the 2019 and 2020 vintages. Vine physiology measurements in irrigated and non-irrigated plants were performed at three time-points throughout berry development (green berry, veraison and harvest). Berry growth and composition were examined during ripening. According to the results, water deficit resulted in reduced berry size and increased levels of soluble sugars, total phenols and anthocyanins. The expression profile of specific genes, known to control grape color, aroma and flavor was altered by water availability during maturation in a cultivar-specific manner. In agreement with the increased concentration of phenolic compounds due to water deficit, genes of the phenylpropanoid pathway in the red-skinned Agiorgitiko exhibited higher expression levels and earlier up-regulation than in the white Assyrtiko. The expression profile of the other genes during maturation or in response to water deficit was depended on the vintage.

9.
iScience ; 24(8): 102848, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34381973

RESUMEN

Gene coexpression analysis refers to the discovery of sets of genes which exhibit similar expression patterns across multiple transcriptomic data sets, such as microarray experiment data of public repositories. Arabidopsis Coexpression Tool (ACT), a gene coexpression analysis web tool for Arabidopsis thaliana, identifies genes which are correlated to a driver gene. Primary microarray data from ATH1 Affymetrix platform were processed with Single-Channel Array Normalization algorithm and combined to produce a coexpression tree which contains ∼21,000 A. thaliana genes. ACT was developed to present subclades of coexpressed genes, as well as to perform gene set enrichment analysis, being unique in revealing enriched transcription factors targeting coexpressed genes. ACT offers a simple and user-friendly interface producing working hypotheses which can be experimentally verified for the discovery of gene partnership, pathway membership, and transcriptional regulation. ACT analyses have been successful in identifying not only genes with coordinated ubiquitous expressions but also genes with tissue-specific expressions.

10.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445148

RESUMEN

The gram-positive pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial canker disease in tomato, affecting crop yield and fruit quality. To understand how tomato plants respond, the dynamic expression profile of host genes was analyzed upon Cmm infection. Symptoms of bacterial canker became evident from the third day. As the disease progressed, the bacterial population increased in planta, reaching the highest level at six days and remained constant till the twelfth day post inoculation. These two time points were selected for transcriptomics. A progressive down-regulation of key genes encoding for components of the photosynthetic apparatus was observed. Two temporally separated defense responses were observed, which were to an extent interdependent. During the primary response, genes of the phenylpropanoid pathway were diverted towards the synthesis of monolignols away from S-lignin. In dicots, lignin polymers mainly consist of G- and S-units, playing an important role in defense. The twist towards G-lignin enrichment is consistent with previous findings, highlighting a response to generate an early protective barrier and to achieve a tight interplay between lignin recomposition and the primary defense response mechanism. Upon progression of Cmm infection, the temporal deactivation of phenylpropanoids coincided with the upregulation of genes that belong in a secondary response mechanism, supporting an elegant reprogramming of the host transcriptome to establish a robust defense apparatus and suppress pathogen invasion. This high-throughput analysis reveals a dynamic reorganization of plant defense mechanisms upon bacterial infection to implement an array of barriers preventing pathogen invasion and spread.


Asunto(s)
Regulación hacia Abajo/genética , Fotosíntesis/genética , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Clavibacter/genética , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Fotosíntesis/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Transcriptoma/genética , Regulación hacia Arriba/genética
11.
Plants (Basel) ; 10(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34451601

RESUMEN

Wines produced from autochthonous Vitis vinifera varieties have an essential financial impact on the national economy of Greece. However, scientific data regarding characteristics and quality aspects of these wines is extremely limited. The aim of the current study is to define the molecular profile and to describe chemical and sensory characteristics of the wines produced by two autochthonous red grapevine varieties-"Karnachalades" and "Bogialamades"-grown in the wider area of Soufli (Thrace, Greece). We used seven microsatellites to define the molecular profile of the two varieties, and then we compared their profile to similar molecular data from other autochthonous as well as international varieties. Grape berries were harvested at optimum technological maturity from a commercial vineyard for two consecutive vintages (2017-2018) and vilification was performed using a common vinification protocol: the 2017 vintage provided wines, from both varieties, with greater rates of phenolics and anthocyanins than 2018, whereas regarding the sensory analysis, "Bogialamades" wine provided a richer profile than "Karnachalades". To our knowledge, this is the first study that couples both molecular profiling and exploration of the enological potential of the rare Greek varieties "Karnachalades" and "Bogialamades"; they represent two promising varieties for the production of red wines in the historic region of Thrace.

12.
New Phytol ; 231(5): 1814-1831, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34086995

RESUMEN

Auxin homeostasis and signaling affect a broad range of developmental processes in plants. The interplay between HSP90 and auxin signaling is channeled through the chaperoning capacity of the HSP90 on the TIR1 auxin receptor. The sophisticated buffering capacity of the HSP90 system through the interaction with diverse signaling protein components drastically shapes genetic circuitries regulating various developmental aspects. However, the elegant networking capacity of HSP90 in the global regulation of auxin response and homeostasis has not been appreciated. Arabidopsis hsp90 mutants were screened for gravity response. Phenotypic analysis of root meristems and cotyledon veins was performed. PIN1 localization in hsp90 mutants was determined. Our results showed that HSP90 affected the asymmetrical distribution of PIN1 in plasma membranes and influenced its expression in prompt cell niches. Depletion of HSP90 distorted polar distribution of auxin, as the acropetal auxin transport was highly affected, leading to impaired root gravitropism and lateral root formation. The essential role of the HSP90 in auxin homeostasis was profoundly evident from early development, as HSP90 depletion affected embryo development and the pattern formation of veins in cotyledons. Our data suggest that the HSP90-mediated distribution of PIN1 modulates auxin distribution and thereby auxin signaling to properly promote plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas HSP90 de Choque Térmico , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Ácidos Indolacéticos , Proteínas de Transporte de Membrana/metabolismo
13.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922182

RESUMEN

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-ß controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.

14.
Methods Mol Biol ; 2172: 165-182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32557369

RESUMEN

Research on gene functions in non-model tree species is hampered by a number of difficulties such as time-consuming genetic transformation protocols and extended period for the production of healthy transformed offspring, among others. Virus-induced gene silencing (VIGS) is an alternative approach to transiently knock out an endogenous gene of interest (GOI) by the introduction of viral sequences encompassing a fragment of the GOI and to exploit the posttranscriptional gene silencing (PTGS) mechanism of the plant, thus triggering silencing of the GOI. Here we describe the successful application of Tobacco rattle virus (TRV)-mediated VIGS through agroinoculation of olive plantlets. This methodology is expected to serve as a fast tracking and powerful tool enabling researchers from diversified fields to perform functional genomic analyses in the olive tree.


Asunto(s)
Olea/genética , Oleaceae/genética , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Olea/virología , Oleaceae/virología , Interferencia de ARN
15.
Mol Plant ; 13(4): 612-633, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935463

RESUMEN

Stomatal ontogenesis, patterning, and function are hallmarks of environmental plant adaptation, especially to conditions limiting plant growth, such as elevated temperatures and reduced water availability. The specification and distribution of a stomatal cell lineage and its terminal differentiation into guard cells require a master regulatory protein phosphorylation cascade involving the YODA mitogen-activated protein kinase kinase kinase. YODA signaling results in the activation of MITOGEN-ACTIVATED PROTEIN KINASEs (MPK3 and MPK6), which regulate transcription factors, including SPEECHLESS (SPCH). Here, we report that acute heat stress affects the phosphorylation and deactivation of SPCH and modulates stomatal density. By using complementary molecular, genetic, biochemical, and cell biology approaches, we provide solid evidence that HEAT SHOCK PROTEINS 90 (HSP90s) play a crucial role in transducing heat-stress response through the YODA cascade. Genetic studies revealed that YODA and HSP90.1 are epistatic, and they likely function linearly in the same developmental pathway regulating stomata formation. HSP90s interact with YODA, affect its cellular polarization, and modulate the phosphorylation of downstream targets, such as MPK6 and SPCH, under both normal and heat-stress conditions. Thus, HSP90-mediated specification and differentiation of the stomatal cell lineage couples stomatal development to environmental cues, providing an adaptive heat stress response mechanism in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Quinasas Quinasa Quinasa PAM/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , División Celular , Linaje de la Célula , Cotiledón/citología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas HSP90 de Choque Térmico/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosforilación , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Unión Proteica , Transducción de Señal
16.
Dev Cell ; 50(6): 767-779.e7, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31447263

RESUMEN

Eukaryotic organisms accomplish the removal of introns to produce mature mRNAs through splicing. Nuclear and organelle splicing mechanisms are distinctively executed by spliceosome and group II intron complex, respectively. Here, we show that LEFKOTHEA, a nuclear encoded RNA-binding protein, participates in chloroplast group II intron and nuclear pre-mRNA splicing. Transiently optimized LEFKOTHEA nuclear activity is fundamental for plant growth, whereas the loss of function abruptly arrests embryogenesis. Nucleocytoplasmic partitioning and chloroplast allocation are efficiently balanced via functional motifs in LEFKOTHEA polypeptide. In the context of nuclear-chloroplast coevolution, our results provide a strong paradigm of the convergence of RNA maturation mechanisms in the nucleus and chloroplasts to coordinately regulate gene expression and effectively control plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Núcleo Celular/genética , Cloroplastos/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Arabidopsis/embriología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Núcleo Celular/ultraestructura , Cloroplastos/ultraestructura , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Intrones/genética , Meristema/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Unión Proteica/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Semillas/metabolismo , Semillas/ultraestructura , Empalmosomas/metabolismo
17.
Electrophoresis ; 40(9): 1365-1371, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30698287

RESUMEN

Electrophoretic mobility shift assay (EMSA) is a sensitive technique useful in the identification and characterization of protein interactors with nucleic acids. This assay provides an efficient method to study DNA or RNA binding proteins and to identify nucleic acid substrates. The specific interaction plays important roles in many biological processes such as transcription, translation, splicing, and global gene expression. In this article, we have modified the EMSA technique and developed a non-radioactive straightforward method to study and determine RNA-protein interactions. The labeling of target RNAs by 3'-end biotinylation and the detection of biotin reactivity to streptavidin-conjugated horseradish peroxidase is a highly sensitive approach capable to detect the formation of RNA-protein complexes. Overall, we provide a complete technical guide useful to determine in vitro RNA-protein interactions and analyze RNA target specificity.


Asunto(s)
Proteínas de Unión al ADN/análisis , Ensayo de Cambio de Movilidad Electroforética/métodos , Proteínas de Unión al ARN/análisis , Proteínas Bacterianas/metabolismo , Biotinilación , Ensayo de Cambio de Movilidad Electroforética/normas , Peroxidasa de Rábano Silvestre/metabolismo , Ácidos Nucleicos/metabolismo , Unión Proteica , Análisis de Secuencia de ARN
18.
J Exp Bot ; 70(7): 2185-2197, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30590727

RESUMEN

The degradation of damaged proteins is essential for cell viability. Lon is a highly conserved ATP-dependent serine-lysine protease that maintains proteostasis. We performed a comparative genome-wide analysis to determine the evolutionary history of Lon proteases. Prokaryotes and unicellular eukaryotes retained a single Lon copy, whereas multicellular eukaryotes acquired a peroxisomal copy, in addition to the mitochondrial gene, to sustain the evolution of higher order organ structures. Land plants developed small Lon gene families. Despite the Lon2 peroxisomal paralog, Lon genes triplicated in the Arabidopsis lineage through sequential evolutionary events including whole-genome and tandem duplications. The retention of Lon1, Lon4, and Lon3 triplicates relied on their differential and even contrasting expression patterns, distinct subcellular targeting mechanisms, and functional divergence. Lon1 seems similar to the pre-duplication ancestral gene unit, whereas the duplication of Lon3 and Lon4 is evolutionarily recent. In the wider context of plant evolution, papaya is the only genome with a single ancestral Lon1-type gene. The evolutionary trend among plants is to acquire Lon copies with ambiguous pre-sequences for dual-targeting to mitochondria and chloroplasts, and a substrate recognition domain that deviates from the ancestral Lon1 type. Lon genes constitute a paradigm of dynamic evolution contributing to understanding the functional fate of gene duplicates.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Proteínas de Plantas/genética , Plantas/genética , Proteasa La/genética , Secuencia de Bases , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteasa La/metabolismo , Alineación de Secuencia
19.
J Plant Physiol ; 231: 210-218, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30286324

RESUMEN

Olive is one of the most important fruit crop trees in the history of Mediterranean because of the high quality oil. Olive oil has a well-balanced fatty acid composition along with biophenols, which make it exceptional in human diet and provide an exceptional value to the olive oil. Leaf non-glandular peltate trichomes are specialized cell types representing a protective barrier against acute environmental conditions. To characterize the proteome of this highly differentiated cell type, we performed a comparative proteomic analysis among isolated trichomes and trichome-less leaves. Proteins were separated and identified using the 2-DE MALDI-TOF/MS method. A number of enzymes involved in abiotic and biotic stress responses are present and may be responsible for the adaptation to prolonged adverse environmental conditions. The results show that this highly differentiated cell type is physiologically active fulfilling the demands of the trichomes in furnishing the leaf with a highly protective mechanism.


Asunto(s)
Olea/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Tricomas/metabolismo , Focalización Isoeléctrica , Microscopía Fluorescente , Olea/fisiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/análisis , Proteínas de Plantas/fisiología , Estrés Fisiológico , Tricomas/química , Tricomas/citología , Tricomas/fisiología
20.
Plant Physiol ; 174(3): 1371-1383, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28483880

RESUMEN

Oleuropein, a terpene-derived glycosylated secoiridoid biosynthesized exclusively by members of the Oleaceae family, is involved in a two-component defense system comprising a ß-glucosidase that activates oleuropein into a toxic glutaraldehyde-like structure. Oleuropein and its deglycosylated derivatives have high pharmaceutical interest. In this study we determined that the in planta heterologous expressed OeGLU, an oleuropein-specific ß-glucosidase from olive (Olea europaea), had enzymatic kinetics similar to the olive native enzyme. The C terminus encompassing the nuclear localization signal sequesters the enzyme in the nucleus, and predetermines the protein-protein recognition and homodimerization. Biochemical analysis revealed that OeGLU is a homomultimer with high Mr In silico prediction modeling of the complex structure and bimolecular fluorescence complementation analyses revealed that the C terminus of OeGLU is essential for the proper assembly of an octameric form, a key conformational feature that determines the activity of the enzyme. Our results demonstrate that intrinsic characteristics of the OeGLU ensure separation from oleuropein and keep the dual-partner defensive system conditionally inactive. Upon cell destruction, the dual-partner defense system is activated and olive massively releases the arsenal of defense.


Asunto(s)
Núcleo Celular/enzimología , Iridoides/química , Iridoides/metabolismo , Olea/enzimología , Pliegue de Proteína , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Simulación por Computador , Glicosilación , Glucósidos Iridoides , Cinética , Señales de Localización Nuclear , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA